Low Rank Approximation of Entangled Bipartite Systems

Matthew M. Lin

Department of Mathematics National Cheng Kung University, Taiwan

Jan. 17, 2022

Prof. Moody T. Chu North Carolina State University

Attention is not all you need

Algorithms

Conclusion

Outline

Background

Preliminaries Problem description

Algorithms

Rank-1 approximation Quantum low-rank separability approximation Numerial Experiments

Conclusion

Density matrix

- Each quantum mechanical system is associated with a complex Hilbert space *H*.
- Any unit vector $|\mathbf{x}\rangle \in \mathscr{H}$ is referred to as a pure state.
- Let |x⟩ ⟨x|z⟩ be the orthogonal projection of any |z⟩ ∈ ℋ onto a given pure state |x⟩.
- A mixed state is a probabilistic mixture of finitely many pure states:

$$((|\mathbf{x}_1\rangle, \mu_1), (|\mathbf{x}_2\rangle, \mu_2), \dots, (|\mathbf{x}_d\rangle, \mu_d))$$

• The density matrix ρ associated with such a mixed state is

$$ho := \sum_{i} \mu_{i} \ket{\mathbf{x}_{i}} ra{\mathbf{x}_{i}}; \quad \sum_{i} \mu_{i} = \mathbf{1}; \quad \mu_{i} \ge \mathbf{0},$$

 The density matrix ρ is a positive semi-definite operator with unit trace.

Bipartite system

 Given two Hilbert spaces *H*₁ and *H*₂, the tensor product space is defined to be the set

$$\mathscr{H}_1 \otimes \mathscr{H}_2 := \{ \sum_{s,t} \mathbf{u}_s \otimes \mathbf{v}_t | \mathbf{u}_s \in \mathscr{H}_1, \mathbf{v}_t \in \mathscr{H}_2 \},\$$

- The only property required of \otimes is its bi-linearity.
- An inner product can be induced via the relationship

$$\langle \mathbf{x} \otimes \mathbf{y} | \mathbf{z} \otimes \mathbf{w}
angle := \langle \mathbf{x} | \mathbf{z}
angle \langle \mathbf{y} | \mathbf{w}
angle$$
 .

• We call $\mathscr{H}_1 \otimes \mathscr{H}_2$ the state space of a bipartite system.

Finite Dimensional Quantum Mechanical Systems

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are finite dimensional with orthonormal basis states $\{\mathbf{e}_i\}_{i=1}^m$ and $\{\mathbf{f}_j\}_{j=1}^n$, respectively. Then
 - **1.** $\{\mathbf{e}_i \otimes \mathbf{f}_j\}$ is a natural orthonormal basis for $\mathscr{H}_1 \otimes \mathscr{H}_2$.
 - Elements in ℋ₁ and ℋ₂ can be interpreted as column vectors **x** ∈ ℂ^m and **y** ∈ ℂⁿ, respectively.
 - The action x ⊗ y is equivalent to xy[⊤] (i.e, outer product or tensor product x ∘ y).
 - **4.** An element in $\mathcal{H}_1 \otimes \mathcal{H}_2$ can be represented by a matrix in $\mathbb{C}^{m \times n}$, or, simply, a column vector in \mathbb{C}^{mn} .
- |C⟩ in ℋ₁ ⊗ ℋ₂ is a pure state if its matrix representation
 C ∈ C^{m×n} has unit Frobenius norm.
- A density matrix ρ over $\mathscr{H}_1 \otimes \mathscr{H}_2$ should be of the form

$$\rho = \sum_{i} \mu_{i} |C_{i}\rangle \langle C_{i}|; \quad \sum_{i} \mu_{i} = 1; \quad \mu_{i} \ge 0,$$

where each $|C_i\rangle$ represents a pure state in $\mathcal{H}_1 \otimes \mathcal{H}_2$.

Example

- Consider $\mathscr{H}_i = \mathbb{C}^2$, i = 1, 2, with the standard basis denoted by $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- In the quantum formalism, a tensor product |↑⟩ ⊗ |↓⟩ is often abbreviated as |↑↓⟩.
- A natural basis for the tensor product space $\mathbb{C}^2\otimes\mathbb{C}^2$ is:

 $\{\left|00\right\rangle,\left|01\right\rangle,\left|10\right\rangle,\left|11\right\rangle\}$

whose corresponding matrix representations are:

$$\left[\begin{array}{cc}1&0\\0&0\end{array}\right],\quad \left[\begin{array}{cc}0&1\\0&0\end{array}\right],\quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}0&0\\0&1\end{array}\right],$$

respectively.

Bell States

 In quantum information science, however, a more commonly used basis is the Bell states

$$\left(\begin{array}{ccc} |\Phi^+\rangle &:=& \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \\ |\Phi^-\rangle &:=& \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \\ |\Psi^+\rangle &:=& \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\ |\Psi^-\rangle &:=& \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle). \end{array} \right.$$

• The Bell states form an orthonormal basis with the matrix representations given by

$$\frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right], \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right],$$

Density matrices of Bell States

• The corresponding density matrices $\rho_{|\Phi^+\rangle} = |\Phi^+\rangle \langle \Phi^+|$ and so on should be expressed respectively as

Entanglement

• If a pure state $|\psi
angle\in\mathscr{H}_1\otimes\mathscr{H}_2$ can be expressed as

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle, \qquad (1)$$

where $|\psi_i\rangle \in \mathscr{H}_i$, i = 1, 2, are pure states, respectively, then we say that the pure state $|\psi\rangle$ is separable; otherwise, it is said to be entangled.

• The Bell states are entangled.

Conclusion

Schmidt decomposition

Lemma (Schmidt decomposition)

Any pure state $|\psi
angle\in\mathscr{H}_1\otimes\mathscr{H}_2$ can be written in the form

$$\left|\psi\right\rangle = \sum_{j} \sigma_{j} \left|\mathbf{u}_{j}\right\rangle \otimes \left|\mathbf{v}_{j}\right\rangle$$

where $|\mathbf{u}_j\rangle \in \mathscr{H}_1$ and $|\mathbf{v}_j\rangle \in \mathscr{H}_2$ are orthonormal vectors, $\sigma_j \ge 0$ and $\sum_j \sigma_j^2 = 1$.

Separable density matrix

 A more intriguing question is to determine whether a given density matrix ρ over ℋ₁ ⊗ ℋ₂ can be decomposed as

$$\rho = \sum_{k} \eta_{k} \mathcal{D}_{k}^{(1)} \otimes \mathcal{D}_{k}^{(2)}, \quad \sum_{k} \eta_{k} = 1, \quad \eta_{k} \ge 0.$$

- $\{\mathcal{D}_k^{(1)}\}$ and $\{\mathcal{D}_k^{(2)}\}$ are density matrices in \mathscr{H}_1 and \mathscr{H}_2 .
- We call a density matrix ρ over the bipartite space is separable if and only if

$$\rho = \sum_{\ell} \theta_{\ell}(|\mathbf{x}_{\ell}\rangle \langle \mathbf{x}_{\ell}|) \otimes (|\mathbf{y}_{\ell}\rangle \langle \mathbf{y}_{\ell}|).$$

- $\mathbf{x}_{\ell} \in \mathscr{H}_1$ and $\mathbf{y}_{\ell} \in \mathscr{H}_2$ are unit vectors.
- $\theta_{\ell} \geq 0$ and $\sum_{\ell} \theta_{\ell} = 1$.

Lemma (Chen, Wu 2003)

Given a density matrix $\rho \in \mathbb{C}^{mn \times mn}$, let $\mathscr{R}(\rho) \in \mathbb{C}^{m^2 \times n^2}$ denote the \mathscr{R} -folding¹ of ρ . If ρ is separable, then necessarily the Ky Fan norm , i.e., the sum of all singular values of $\mathscr{R}(\rho)$, is less than 1.

- The Bell state Φ⁺ is entangled and even more its density matrix ρ_{|Φ⁺⟩} is entangled since the *R*-folding of the density matrix ρ_{|Φ⁺⟩} is ¹/₂*l*₄ whose Ky Fan norm is 1.
- Similar arguments can be applied to show that none of $\rho_{|\Phi^-\rangle}$, $\rho_{|\Psi^+\rangle}$, and $\rho_{|\Psi^-\rangle}$.

¹Also defined in our later discussion.

Approximation

- If *ρ* is not separable, then seeking its nearest separable approximation is a problem of practical importance.
- Different operational paradigms have been proposed:
 - 1. The trace metric

$$D_T(
ho,\sigma) := rac{1}{2} \mathrm{Tr} \sqrt{(
ho-\sigma)^2},$$

2. The Bures distance

$$\mathcal{D}_{\mathcal{B}}(
ho,\sigma) := \sqrt{2 - 2 \mathrm{Tr} \sqrt{\sqrt{
ho} \sigma \sqrt{
ho}}},$$

3. The Frobenius norm

$$D_F(\rho,\sigma) = \frac{1}{2} \|\rho - \sigma\|_F = \frac{1}{2} \sqrt{\operatorname{Tr}(\rho - \sigma)^2}.$$

Entangled Bipartite Quantum Systems

Problem

Given a positive definite (PD) matrix $\rho \in \mathbb{C}^{mn \times mn}$ with unit trace, find its approximation in the form

$$\min_{\substack{\lambda_r \ge 0, \sum_{r=1}^R \lambda_r = 1, \mathbf{a}_r \in \mathbb{C}^m, \mathbf{b}_r \in \mathbb{C}^n \\ \|\mathbf{a}_r\| = 1, \|\mathbf{b}_r\| = 1}} \|\rho - \sum_{r=1}^R \lambda_r(\mathbf{a}_r \mathbf{a}_r^*) \otimes (\mathbf{b}_r \mathbf{b}_r^*)\|_F^2, \quad (2)$$

where * denotes the conjugate transpose.

Algorithms

Difficulities

- Deciding whether a density matrix is entangled or not is an NP hard problem.
- In our case, our formulation is not for the task of "deciding" whether a given mixed state is entangled or not.
- Instead, per given density matrix *ρ* and a fixed rank *R*, we look for a local separable approximation.
 - 1. The Cauchy–Riemann equations do not hold.
 - 2. Approximation over real field is not realistic:

$$\mathbf{x} \otimes \mathbf{y} = (\mathbf{u} \otimes \mathbf{p} - \mathbf{v} \otimes \mathbf{q}) + \imath (\mathbf{v} \otimes \mathbf{p} + \mathbf{u} \otimes \mathbf{q})$$

if $\mathbf{x} = \mathbf{u} + \imath \mathbf{v}$ and $\mathbf{y} = \mathbf{p} + \imath \mathbf{q}$.

Rank-1 Approximation of Entangled Bipartite Systems

Example

Given a fixed positive semi-definite matrix A in $\mathbb{C}^{mn \times mn}$, consider

$$\min_{\substack{\lambda \in \mathbb{R}_+, \mathbf{x} \in \mathbb{C}^m, \mathbf{y} \in \mathbb{C}^n \\ \|\mathbf{x}\| = 1, \|\mathbf{y}\| = 1}} \|A - \lambda(\mathbf{x}\mathbf{x}^*) \otimes (\mathbf{y}\mathbf{y}^*)\|_F^2.$$
(3)

We can think of (3) as a special case of (2) with R = 1

• The minimization above is equivalent to maximizing the absolute value of

$$\lambda(\mathbf{x},\mathbf{y}) := \langle \mathbf{A}, (\mathbf{x}\otimes\mathbf{y})(\mathbf{x}\otimes\mathbf{y})^*
angle$$

subject to the constraints that **x** and **y** are of unit lengths.

Related rank-1 tensor approximation

• This approximation can be recast as a special type of rank-1 approximation with "shared" factors:

$$\min_{\substack{\lambda \in \mathbb{R}_+, \mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n \\ \|\mathbf{x}\| = 1, \|\mathbf{y}\| = 1}} \| \mathfrak{A} - \lambda \, \mathbf{x} \circ \mathbf{x} \circ \mathbf{y} \circ \mathbf{y} \|_F^2,$$

where \circ denotes the outer product and $\mathfrak{A} \in \mathbb{R}^{m \times m \times n \times n}$ is a special refolding of the original $A \in \mathbb{R}^{mn \times mn}$ into an order-4 tensor.

- This specially structured problem can be handled by some conventional techniques, say, the Tensorlab toolbox.
- To this, we propose two new rank-1 approximation methods which are easily constructed and have higher efficiency when comparing with some state-of-the-art optimization techniques.
- These methods could be served as a first step toward a more general problem.

Wirtinger calculus

- Let *f* : C → R be a given real-valued function over a complex variable *z* = *x* + *iy* such that *f*(*z*) = *u*(*x*, *y*).
 - The Wirtinger derivatives are defined by

$$\begin{cases} \frac{\partial f}{\partial z} &:= \frac{1}{2} \left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} \right), \\ \frac{\partial f}{\partial \overline{z}} &:= \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y} \right), \end{cases}$$

• In other words, the two symbols z and \overline{z} are formally regarded as independent with respect to each other.

Conclusion

Gradient information

Lemma

If $f : \mathbb{C}^n \to \mathbb{R}$ is regarded as $f(\mathbf{z}) = f(\mathbf{u}, \mathbf{v})$ for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, where $\mathbf{z} = \mathbf{u} + \imath \mathbf{v} \in \mathbb{C}^n$. Then the "true" gradient of f is given by

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{u}} \\ \frac{\partial f}{\partial \mathbf{v}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{z}} + \frac{\partial f}{\partial \mathbf{\overline{z}}} \\ \imath(\frac{\partial f}{\partial \mathbf{z}} - \frac{\partial f}{\partial \mathbf{\overline{z}}}) \end{bmatrix}$$

Block matrix A

• Consider an $m \times m$ block matrix A with blocks $A_{ij} \in \mathbb{R}^{n \times n}$,

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1,m} \\ A_{21} & A_{22} & \cdots & A_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,m} \end{bmatrix} \in \mathbb{C}^{mn \times mn}$$

• Associated with *A*, we define the so called *R*-folding:

$$\mathscr{R}(A) := \left[egin{array}{c} \mathsf{vec}(A_{1,1})^{ op} \ \mathsf{vec}(A_{2,1})^{ op} \ dots \ \mathsf{vec}(A_{m,m})^{ op} \end{array}
ight] \in \mathbb{C}^{m^2 imes n^2},$$

where **vec** denotes the conventional vectorization of a matrix by its columns.

Conclusion

Calculation of λ : Way 1

Observe that

$$\begin{array}{ll} \lambda(\mathbf{x},\mathbf{y}) &=& \langle \mathcal{A}, (\overline{\mathbf{x}}\otimes\overline{\mathbf{y}})(\mathbf{x}\otimes\mathbf{y})^{\top}\rangle_{\mathbb{R}} \\ &=& \langle \mathscr{A}(\mathbf{y},\overline{\mathbf{y}})\mathbf{x},\overline{\mathbf{x}}\rangle_{\mathbb{R}} = \langle \mathscr{B}(\mathbf{x},\overline{\mathbf{x}})\mathbf{y},\overline{\mathbf{y}}\rangle_{\mathbb{R}}, \end{array}$$

where

$$\begin{split} \mathscr{A}(\mathbf{y},\overline{\mathbf{y}}) &:= \text{ reshape}(\mathscr{R}(A)(\mathbf{y}\otimes\overline{\mathbf{y}}),[m,m]), \\ \mathscr{B}(\mathbf{x},\overline{\mathbf{x}}) &:= \text{ reshape}(\mathscr{R}(A)^{\top}(\mathbf{x}\otimes\overline{\mathbf{x}}),[n,n]). \end{split}$$

First Order Optimality Condition

Lemma (FOC)

The first order optimality condition for maximizing $\lambda(\mathbf{x}, \mathbf{y})$ is that

$$\left\{ egin{array}{lll} \mathscr{A}(\mathbf{y},\overline{\mathbf{y}})\mathbf{x} &=& \lambda(\mathbf{x},\mathbf{y})\mathbf{x}, \ \mathscr{B}(\mathbf{x},\overline{\mathbf{x}})\mathbf{y} &=& \lambda(\mathbf{x},\mathbf{y})\mathbf{y}. \end{array}
ight.$$

Power-like iterative scheme

 To obtain the (local) maximizer of λ(x, y), we start from an initial value (x^[0], y^[0]) and repeat the following process:

$$\begin{cases} \mathbf{x}^{[\rho+1]} &:= \frac{\mathscr{A}(\mathbf{y}^{[\rho]}, \overline{\mathbf{y}^{[\rho]}}) \mathbf{x}^{[\rho]}}{\|\mathscr{A}(\mathbf{y}^{[\rho]}, \overline{\mathbf{y}^{[\rho]}}) \mathbf{x}^{[\rho]}\|_2} \\ \mathbf{y}^{[\rho+1]} &:= \frac{\mathscr{B}(\mathbf{x}^{[\rho+1]}, \overline{\mathbf{x}^{[\rho]}}) \mathbf{y}^{[\rho]}}{\|\mathscr{B}(\mathbf{x}^{[\rho+1]}, \overline{\mathbf{x}^{[\rho]}}) \mathbf{y}^{[\rho]}\|_2}, \end{cases} \quad \rho = 0, 1, 2, \dots.$$

• If the iteration ever converges, the fixed-point of this iteration satisfies precisely the first order optimality condition

Conclusion

First Order Optimality Condition

Let $C(\mathbf{x}, \mathbf{y}) := \operatorname{reshape}(A(\mathbf{x} \otimes \mathbf{y}), [n, m]) \in \mathbb{C}^{n \times m}$.

Lemma (FOC2)

A critical point must satisfies the relationship

$$\begin{cases} \mathcal{C}(\mathbf{x},\mathbf{y})^{\top}\overline{\mathbf{y}} = (\mathbf{y}^{\top}\mathcal{C}(\mathbf{x},\mathbf{y})\mathbf{x})\mathbf{x}, \\ \mathcal{C}(\mathbf{x},\mathbf{y})\overline{\mathbf{x}} = (\mathbf{y}^{\top}\mathcal{C}(\mathbf{x},\mathbf{y})\mathbf{x})\mathbf{y}. \end{cases}$$

That is, with respect to $C(\mathbf{x}, \mathbf{y})$,

- $(\lambda, \mathbf{y}, \overline{\mathbf{x}})$ is the dominant singular triplets of $\mathcal{C}(\mathbf{x}, \mathbf{y})$.
- **y** is the dominant left singular vector.
- $\overline{\mathbf{x}}$ is the dominant right singular vector of $\mathcal{C}(\mathbf{x}, \mathbf{y})$.
- An SVD-like iteration can be seen in [Chu & Lin, 2021].

Gradient flow for quantum low-rank approximation

• For convenience, introduce the abbreviations

$$\Theta = \Theta(\lambda_1, \dots, \lambda_R, \mathbf{x}_1, \dots, \mathbf{x}_R, \mathbf{y}_1, \dots, \mathbf{y}_R)$$

:= $\rho - \sum_{r=1}^R \lambda_r (\mathbf{x}_r \otimes \mathbf{y}_r) (\mathbf{x}_r \otimes \mathbf{y}_r)^* \in \mathbb{C}^{mn \times mn},$

and, for each $r \in \llbracket R \rrbracket$,

$$\begin{split} \omega_r &= \omega_r(\lambda_1, \dots, \lambda_R, \mathbf{x}_1, \dots, \mathbf{x}_R, \mathbf{y}_1, \dots, \mathbf{y}_R) \\ &:= \langle \mathbf{x}_r \otimes \mathbf{y}_r, \Theta(\mathbf{x}_r \otimes \mathbf{y}_r) \rangle \in \mathbb{R}, \\ \mathscr{C}_r &= \mathscr{C}_r(\lambda_1, \dots, \lambda_R, \mathbf{x}_1, \dots, \mathbf{x}_R, \mathbf{y}_1, \dots, \mathbf{y}_R) \\ &:= \mathbf{reshape}(\Theta(\mathbf{x}_r \otimes \mathbf{y}_r), n, m) \in \mathbb{C}^{n \times m}. \end{split}$$

Calculation of the gradient

Lemma

Suppose $\mathbf{x}_r = \mathbf{u}_r + \imath \mathbf{v}_r$ and $\mathbf{y}_r = \mathbf{p}_r + \imath \mathbf{q}_r$ with $\mathbf{u}_r, \mathbf{v}_r \in \mathbb{R}^m$ and $\mathbf{p}_r, \mathbf{q}_r \in \mathbb{R}^n$. Let $g := \langle \Theta, \Theta \rangle$ be a function of the real variables $\lambda_r, \mathbf{u}_r, \mathbf{v}_r, \mathbf{p}_r$, and $\mathbf{q}_r, r \in [\![R]\!]$. Then the portions of the gradient ∇g with respect to the respective real variables are given by

$$\begin{cases} \frac{\partial g}{\partial \lambda_r} &= -2\omega_r, \\ \frac{\partial g}{\partial (\mathbf{u}_r, \mathbf{v}_r)} &= -4\lambda_r \begin{bmatrix} \operatorname{Re}(\mathscr{C}_r^\top \overline{\mathbf{y}}_r) \\ \operatorname{Im}(\mathscr{C}_r^\top \overline{\mathbf{y}}_r) \end{bmatrix}, \quad r \in \llbracket R \rrbracket. \\ \frac{\partial g}{\partial (\mathbf{p}_r, \mathbf{q}_r)} &= -4\lambda_r \begin{bmatrix} \operatorname{Re}(\mathscr{C}_r \overline{\mathbf{x}}_r) \\ \operatorname{Im}(\mathscr{C}_r \overline{\mathbf{x}}_r) \end{bmatrix}. \end{cases}$$

Projected gradient

- Since our problem is constrained to the pure states, we need the projected gradient.
- The projection can be obtained by projecting the blocks of ∇g onto the corresponding unit spheres, S^{2m-1} and S²ⁿ⁻¹, respectively.

Lemma

The projected gradients of objective function g can be condensed into the expressions

$$\begin{cases} \operatorname{Proj}_{S^{2m-1}} \frac{\partial g}{\partial (\mathbf{u}_r, \mathbf{v}_r)} &= -4\lambda_r (\mathscr{C}_r^\top \overline{\mathbf{y}}_r - \omega_r \mathbf{x}_r), \\ \operatorname{Proj}_{S^{2n-1}} \frac{\partial g}{\partial (\mathbf{u}_p, \mathbf{v}_q)} &= -4\lambda_r (\mathscr{C}_r \overline{\mathbf{x}}_r - \omega_r \mathbf{y}_r), \end{cases} \quad r \in \llbracket R \rrbracket.$$

Projected gradient flow

• we now define the complex-valued differential system

$$\begin{cases} \frac{d\lambda_r}{dt} = 2\omega_r, \\ \frac{d\mathbf{x}_r}{dt} = 4\lambda_r(\mathscr{C}_r^{\top} \overline{\mathbf{y}}_r - \omega_r \mathbf{x}_r), \quad r \in \llbracket R \rrbracket, \\ \frac{d\mathbf{y}_r}{dt} = 4\lambda_r(\mathscr{C}_r \overline{\mathbf{x}}_r - \omega_r \mathbf{y}_r), \end{cases}$$

where t stands for a dimensionless parameter of time.

• The gradient flow therefore converge globally to a singleton as its limit point.

Maintaining nonnegativity and rand reduction

- **1. Event detection:** Use an event function to detect when any $\lambda_r(t)$, $r \in [\![R]\!]$ becomes zero during the integration.
- **2. Rank deduction:** When the event $\lambda_r(\hat{t}) = 0$ is detected for one particular value *r* and time \hat{t} , the term

$$\lambda_r(\mathbf{x}_r\otimes\mathbf{y}_r)(\mathbf{x}_r\otimes\mathbf{y}_r)^*$$

contributes nothing to the objective value g at that instant.

- We drop this term entirely.
- The low rank *R* is decreased by 1.
- We build an algorithm that can dynamically lower the rank *R* when a certain component is not needed.

Maintain sum-to-one

• To satisfy the constraint $\sum_{r=1}^{R} \lambda_r(t) = 1$ for all $t \ge 0$, it is necessary to impose the consistency condition

$$\sum_{r=1}^{R} \frac{d\lambda_r(t)}{dt} = 0, \quad \text{for all } t \ge 0,$$

 We propose to remedy the situation by modifying the flow for λ_r(t) to

$$rac{d\lambda_r}{dt} = 2(\omega_r - \widetilde{\omega}), \quad r \in \llbracket R
rbracket,$$

where $\widetilde{\omega} := \frac{\sum_{r=1}^{R} \omega_r}{R}$, while the original governing equations for $\frac{d\mathbf{x}_r}{dt}$ and $\frac{d\mathbf{y}_r}{dt}$, $r \in [\![R]\!]$ are kept invariant.

• The resulting system is no longer in the steepest descent direction. We have to show that a descent flow is kept.

Conclusion

Descent flow

Lemma

Let Z(t) denote the newly defined flow

 $Z(t) := (\lambda_1(t), \ldots, \lambda_R(t), \mathbf{x}_1(t), \ldots, \mathbf{x}_R(t), \mathbf{y}_1(t), \ldots, \mathbf{y}_R(t)).$

Then the objection value of g is descending along the trajectory Z(t).

Example 1: Evolution of Objective Values

• Generate a test matrix

$$\rho = \sum_{r=1}^{6} \lambda_r(\mathbf{x}_r \mathbf{x}_r^*) \otimes (\mathbf{y}_r \mathbf{y}_r^*)$$

- $\mathbf{x}_r, \mathbf{y}_r \in \mathbb{C}^5$: with randomly generated unit vectors
- $\lambda_r > 0, r \in [6]$, satisfying $\sum_{r=1}^{6} \lambda_r = 1$, as the target.
- $\rho \in \mathbb{C}^{25 \times 25}$ is already separable in itself with rank 6.
- Starting an experiment with R = 20 initially, we are interested in finding out whether ρ can be completely recovered by our method.

- Each circle indicates an event occurs.
- At the end of integration, the rank is indeed reduced to R = 6 and the objective value is nearly zero in this particular example.

Example 2: Sum-to-one

- *ρ* ∈ C^{40×40}: a randomly generated symmetric and positive definite matrix.
- Search for unit vectors x_r ∈ C⁸ and y_r ∈ C⁵ with initial R = 10 and four sets of randomly generated starting values.
- This is a hard problem in that at $t = 10^4$ the flows have not reached convergence yet, but their descent property is clear. It is also likely they will converge to different optimal values.
- The property $\sum_{r=1}^{10} \lambda_r = 1$ is reasonably preserved within a fairly narrow window of approximately 10^{-8} . This confirms that our strategy for maintaining both sum-to-one and descent achieves its goal.

Background	
000000000000000000000000000000000000000	0

- 1. We interpret the study of the the rank-1 approximation to entangled bipartite systems as a nonlinear eigenvalue problem as well as a nonlinear singular value problem.
- 2. Low rank approximation for entangled bipartite quantum systems is interesting because of its potential application as a way to certify the quality of an entanglement.
- **3.** We describes a complex-valued gradient dynamics for the low rank approximation problem using the Wirtinger calculus.
- 4. Advantages:
 - Easy-to-program numerical schemes
 - Global convergence

Algorithms

Conclusion ○●

Thank you very much !