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Density matrix
• Each quantum mechanical system is associated with a

complex Hilbert space H .
• Any unit vector |x〉 ∈H is referred to as a pure state.
• Let |x〉 〈x|z〉 be the orthogonal projection of any |z〉 ∈H

onto a given pure state |x〉.
• A mixed state is a probabilistic mixture of finitely many

pure states:

((|x1〉 , µ1), (|x2〉 , µ2), . . . , (|xd〉 , µd ))

• The density matrix ρ associated with such a mixed state is

ρ :=
∑

i

µi |xi〉 〈xi | ;
∑

i

µi = 1; µi ≥ 0,

• The density matrix ρ is a positive semi-definite operator with
unit trace.
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Bipartite system

• Given two Hilbert spaces H1 and H2, the tensor product
space is defined to be the set

H1 ⊗H2 := {
∑
s,t

us ⊗ vt |us ∈H1,vt ∈H2},

• The only property required of ⊗ is its bi-linearity.
• An inner product can be induced via the relationship

〈x⊗ y|z⊗w〉 := 〈x|z〉 〈y|w〉 .

• We call H1 ⊗H2 the state space of a bipartite system.
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Finite Dimensional Quantum Mechanical Systems
• Suppose H1 and H2 are finite dimensional with

orthonormal basis states {ei}mi=1 and {fj}nj=1, respectively.
Then

1. {ei ⊗ fj} is a natural orthonormal basis for H1 ⊗H2.
2. Elements in H1 and H2 can be interpreted as column

vectors x ∈ Cm and y ∈ Cn, respectively.
3. The action x⊗ y is equivalent to xy> (i.e, outer product or

tensor product x ◦ y).
4. An element in H1 ⊗H2 can be represented by a matrix in

Cm×n, or, simply, a column vector in Cmn.
• |C〉 in H1 ⊗H2 is a pure state if its matrix representation

C ∈ Cm×n has unit Frobenius norm.
• A density matrix ρ over H1 ⊗H2 should be of the form

ρ =
∑

i

µi |Ci〉 〈Ci | ;
∑

i

µi = 1; µi ≥ 0,

where each |Ci〉 represents a pure state in H1 ⊗H2.
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Example
• Consider Hi = C2, i = 1,2, with the standard basis

denoted by |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
.

• In the quantum formalism, a tensor product |↑〉 ⊗ |↓〉 is
often abbreviated as |↑↓〉.
• A natural basis for the tensor product space C2 ⊗ C2 is:

{|00〉 , |01〉 , |10〉 , |11〉}

whose corresponding matrix representations are:[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

respectively.
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Bell States

• In quantum information science, however, a more
commonly used basis is the Bell states

|Φ+〉 := 1√
2

(|00〉+ |11〉),
|Φ−〉 := 1√

2
(|00〉 − |11〉),

|Ψ+〉 := 1√
2

(|01〉+ |10〉),
|Ψ−〉 := 1√

2
(|01〉 − |10〉).

• The Bell states form an orthonormal basis with the matrix
representations given by

1√
2

[
1 0
0 1

]
,

1√
2

[
1 0
0 −1

]
,

1√
2

[
0 1
1 0

]
,

1√
2

[
0 1
−1 0

]
,
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Density matrices of Bell States

• The corresponding density matrices ρ|Φ+〉 = |Φ+〉 〈Φ+| and
so on should be expressed respectively as

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , 1
2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 ,

1
2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , 1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .
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Entanglement

• If a pure state |ψ〉 ∈H1 ⊗H2 can be expressed as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 , (1)

where |ψi〉 ∈Hi , i = 1,2, are pure states, respectively,
then we say that the pure state |ψ〉 is separable; otherwise,
it is said to be entangled.
• The Bell states are entangled.
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Schmidt decomposition

Lemma (Schmidt decomposition)

Any pure state |ψ〉 ∈H1 ⊗H2 can be written in the form

|ψ〉 =
∑

j

σj
∣∣uj
〉
⊗
∣∣vj
〉

where
∣∣uj
〉
∈H1 and

∣∣vj
〉
∈H2 are orthonormal vectors, σj ≥ 0

and
∑

j σ
2
j = 1.
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Separable density matrix
• A more intriguing question is to determine whether a given

density matrix ρ over H1 ⊗H2 can be decomposed as

ρ =
∑

k

ηkD
(1)
k ⊗D(2)

k ,
∑

k

ηk = 1, ηk ≥ 0.

• {D(1)
k } and {D(2)

k } are density matrices in H1 and H2.
• We call a density matrix ρ over the bipartite space is

separable if and only if

ρ =
∑
`

θ`(|x`〉 〈x`|)⊗ (|y`〉 〈y`|).

• x` ∈H1 and y` ∈H2 are unit vectors.
• θ` ≥ 0 and

∑
` θ` = 1.
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Lemma (Chen, Wu 2003)

Given a density matrix ρ ∈ Cmn×mn, let R(ρ) ∈ Cm2×n2
denote

the R-folding1 of ρ. If ρ is separable, then necessarily the Ky
Fan norm , i.e., the sum of all singular values of R(ρ), is less
than 1.

• The Bell state Φ+ is entangled and even more its density
matrix ρ|Φ+〉 is entangled since the R-folding of the density
matrix ρ|Φ+〉 is 1

2 I4 whose Ky Fan norm is 1.
• Similar arguments can be applied to show that none of
ρ|Φ−〉, ρ|Ψ+〉, and ρ|Ψ−〉.

1Also defined in our later discussion.
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Approximation
• If ρ is not separable, then seeking its nearest separable

approximation is a problem of practical importance.
• Different operational paradigms have been proposed:

1. The trace metric

DT (ρ, σ) :=
1
2
Tr
√

(ρ− σ)2,

2. The Bures distance

DB(ρ, σ) :=

√
2− 2Tr

√√
ρσ
√
ρ,

3. The Frobenius norm

DF (ρ, σ) =
1
2
‖ρ− σ‖F =

1
2

√
Tr(ρ− σ)2.
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Entangled Bipartite Quantum Systems

Problem

Given a positive definite (PD) matrix ρ ∈ Cmn×mn with unit trace,
find its approximation in the form

min
λr≥0,

∑R
r=1 λr =1,ar∈Cm,br∈Cn

‖ar‖=1,‖br‖=1

‖ρ−
R∑

r=1

λr (ar a∗r )⊗ (br b∗r )‖2F , (2)

where ∗ denotes the conjugate transpose.
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Difficulities

• Deciding whether a density matrix is entangled or not is an
NP hard problem.
• In our case, our formulation is not for the task of “deciding”

whether a given mixed state is entangled or not.
• Instead, per given density matrix ρ and a fixed rank R, we

look for a local separable approximation.
1. The Cauchy–Riemann equations do not hold.
2. Approximation over real field is not realistic:

x⊗ y = (u⊗ p− v⊗ q) + ı(v⊗ p + u⊗ q)

if x = u + ıv and y = p + ıq.
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Rank-1 Approximation of Entangled Bipartite
Systems

Example

Given a fixed positive semi-definite matrix A in Cmn×mn,
consider

min
λ∈R+,x∈Cm,y∈Cn

‖x‖=1,‖y‖=1

‖A− λ(xx∗)⊗ (yy∗)‖2F . (3)

We can think of (3) as a special case of (2) with R = 1

• The minimization above is equivalent to maximizing the
absolute value of

λ(x,y) := 〈A, (x⊗ y)(x⊗ y)∗〉

subject to the constraints that x and y are of unit lengths.
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Related rank-1 tensor approximation
• This approximation can be recast as a special type of

rank-1 approximation with “shared” factors:

min
λ∈R+,x∈Rm,y∈Rn

‖x‖=1,‖y‖=1

‖A− λx ◦ x ◦ y ◦ y‖2F ,

where ◦ denotes the outer product and A ∈ Rm×m×n×n is a
special refolding of the original A ∈ Rmn×mn into an order-4
tensor.
• This specially structured problem can be handled by some

conventional techniques, say, the Tensorlab toolbox.
• To this, we propose two new rank-1 approximation

methods which are easily constructed and have higher
efficiency when comparing with some state-of-the-art
optimization techniques.
• These methods could be served as a first step toward a

more general problem.
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Wirtinger calculus

• Let f : C→ R be a given real-valued function over a
complex variable z = x + ıy such that f (z) = u(x , y).
• The Wirtinger derivatives are defined by

∂f
∂z := 1

2 (∂u
∂x − ı

∂u
∂y ),

∂f
∂z := 1

2 (∂u
∂x + ı∂u

∂y ),

• In other words, the two symbols z and z are formally
regarded as independent with respect to each other.
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Gradient information

Lemma

If f : Cn → R is regarded as f (z) = f (u,v) for u,v ∈ Rn, where
z = u + ıv ∈ Cn. Then the ”true” gradient of f is given by

∇f =

[
∂f
∂u
∂f
∂v

]
=

[
∂f
∂z + ∂f

∂z

ı( ∂f
∂z −

∂f
∂z)

]
.
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Block matrix A
• Consider an m ×m block matrix A with blocks Aij ∈ Rn×n,

A =


A11 A12 · · · A1,m
A21 A22 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · Am,m

 ∈ Cmn×mn.

• Associated with A, we define the so called R-folding:

R(A) :=


vec(A1,1)>

vec(A2,1)>

...
vec(Am,m)>

 ∈ Cm2×n2
,

where vec denotes the conventional vectorization of a
matrix by its columns.
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Calculation of λ: Way 1

• Observe that

λ(x,y) = 〈A, (x⊗ y)(x⊗ y)>〉R
= 〈A (y,y)x,x〉R = 〈B(x,x)y,y〉R,

• where

A (y,y) := reshape(R(A)(y⊗ y), [m,m]),

B(x,x) := reshape(R(A)>(x⊗ x), [n,n]).
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First Order Optimality Condition

Lemma (FOC)

The first order optimality condition for maximizing λ(x,y) is that{
A (y,y)x = λ(x,y)x,

B(x,x)y = λ(x,y)y.
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Power-like iterative scheme

• To obtain the (local) maximizer of λ(x,y), we start from an
initial value (x[0],y[0]) and repeat the following process:

x[p+1] := A (y[p],y[p])x[p]

‖A (y[p],y[p])x[p]‖2

y[p+1] := B(x[p+1],x[p])y[p]

‖B(x[p+1],x[p])y[p]‖2
,

p = 0,1,2, . . . .

• If the iteration ever converges, the fixed-point of this
iteration satisfies precisely the first order optimality
condition
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First Order Optimality Condition
Let C(x,y) := reshape(A(x⊗ y), [n,m]) ∈ Cn×m.

Lemma (FOC2)

A critical point must satisfies the relationship{
C(x,y)>y = (y>C(x,y)x)x,

C(x,y)x = (y>C(x,y)x)y.

That is, with respect to C(x,y),
• (λ,y,x) is the dominant singular triplets of C(x,y).
• y is the dominant left singular vector.
• x is the dominant right singular vector of C(x,y).
• An SVD-like iteration can be seen in [Chu & Lin, 2021].
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Gradient flow for quantum low-rank approximation

• For convenience, introduce the abbreviations

Θ = Θ(λ1, . . . , λR,x1, . . . ,xR,y1, . . . ,yR)

:= ρ−
R∑

r=1

λr (xr ⊗ yr )(xr ⊗ yr )∗ ∈ Cmn×mn,

and, for each r ∈ JRK,

ωr = ωr (λ1, . . . , λR,x1, . . . ,xR,y1, . . . ,yR)
:= 〈xr ⊗ yr ,Θ(xr ⊗ yr )〉 ∈ R,

Cr = Cr (λ1, . . . , λR,x1, . . . ,xR,y1, . . . ,yR)
:= reshape(Θ(xr ⊗ yr ),n,m) ∈ Cn×m.
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Calculation of the gradient

Lemma

Suppose xr = ur + ıvr and yr = pr + ıqr with ur ,vr ∈ Rm and
pr ,qr ∈ Rn. Let g := 〈Θ,Θ〉 be a function of the real variables
λr , ur , vr , pr , and qr , r ∈ JRK. Then the portions of the gradient
∇g with respect to the respective real variables are given by

∂g
∂λr

= −2ωr ,

∂g
∂(ur ,vr ) = −4λr

[
Re(C>r yr )
Im(C>r yr )

]
,

∂g
∂(pr ,qr ) = −4λr

[
Re(Cr xr )
Im(Cr xr )

]
.

r ∈ JRK.
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Projected gradient

• Since our problem is constrained to the pure states, we
need the projected gradient.
• The projection can be obtained by projecting the blocks of
∇g onto the corresponding unit spheres, S2m−1 and S2n−1,
respectively.

Lemma

The projected gradients of objective function g can be
condensed into the expressions ProjS2m−1

∂g
∂(ur ,vr ) = −4λr (C>r yr − ωr xr ),

ProjS2n−1
∂g

∂(up,vq) = −4λr (Cr xr − ωr yr ),
r ∈ JRK.
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Projected gradient flow

• we now define the complex-valued differential system
dλr
dt = 2ωr ,

dxr
dt = 4λr (C>r yr − ωr xr ),

dyr
dt = 4λr (Cr xr − ωr yr ),

r ∈ JRK,

where t stands for a dimensionless parameter of time.
• The gradient flow therefore converge globally to a singleton

as its limit point.



Background Algorithms Conclusion

Maintaining nonnegativity and rand reduction

1. Event detection: Use an event function to detect when
any λr (t), r ∈ JRK becomes zero during the integration.

2. Rank deduction: When the event λr (̂t) = 0 is detected for
one particular value r and time t̂ , the term

λr (xr ⊗ yr )(xr ⊗ yr )∗

contributes nothing to the objective value g at that instant.
• We drop this term entirely.
• The low rank R is decreased by 1.
• We build an algorithm that can dynamically lower the rank

R when a certain component is not needed.
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Maintain sum-to-one
• To satisfy the constraint

∑R
r=1 λr (t) = 1 for all t ≥ 0, it is

necessary to impose the consistency condition

R∑
r=1

dλr (t)
dt

= 0, for all t ≥ 0,

• We propose to remedy the situation by modifying the flow
for λr (t) to

dλr

dt
= 2(ωr − ω̃), r ∈ JRK,

where ω̃ :=
∑R

r=1 ωr
R , while the original governing equations

for dxr
dt and dyr

dt , r ∈ JRK are kept invariant.
• The resulting system is no longer in the steepest descent

direction. We have to show that a descent flow is kept.
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Descent flow

Lemma

Let Z (t) denote the newly defined flow

Z (t) := (λ1(t), . . . , λR(t),x1(t), . . . ,xR(t),y1(t), . . . ,yR(t)).

Then the objection value of g is descending along the trajectory
Z (t).
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Example 1: Evolution of Objective Values

• Generate a test matrix

ρ =
6∑

r=1

λr (xr x∗r )⊗ (yr y∗r )

• xr ,yr ∈ C5: with randomly generated unit vectors
• λr > 0, r ∈ J6K, satisfying

∑6
r=1 λr = 1, as the target.

• ρ ∈ C25×25 is already separable in itself with rank 6.
• Starting an experiment with R = 20 initially, we are

interested in finding out whether ρ can be completely
recovered by our method.
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Evolution of Objective Values

(a) Descending behavior of the
objective value
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events detected

(b) Dynamics of λr (t), r ∈ J20K

• Each circle indicates an event occurs.
• At the end of integration, the rank is indeed reduced to

R = 6 and the objective value is nearly zero in this
particular example.
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Example 2: Sum-to-one

• ρ ∈ C40×40: a randomly generated symmetric and positive
definite matrix.
• Search for unit vectors xr ∈ C8 and yr ∈ C5 with initial

R = 10 and four sets of randomly generated starting
values.
• This is a hard problem in that at t = 104 the flows have not

reached convergence yet, but their descent property is
clear. It is also likely they will converge to different optimal
values.
• The property

∑10
r=1 λr = 1 is reasonably preserved within a

fairly narrow window of approximately 10−8. This confirms
that our strategy for maintaining both sum-to-one and
descent achieves its goal.
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(c) Distinct trajectories lead to
distinct objective values.
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(d) Preservation of
∑10

r=1 λr (t) = 1.
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1. We interpret the study of the the rank-1 approximation to
entangled bipartite systems as a nonlinear eigenvalue
problem as well as a nonlinear singular value problem.

2. Low rank approximation for entangled bipartite quantum
systems is interesting because of its potential application
as a way to certify the quality of an entanglement.

3. We describes a complex-valued gradient dynamics for the
low rank approximation problem using the Wirtinger
calculus.

4. Advantages:
• Easy-to-program numerical schemes
• Global convergence
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Thank you very much !
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